
1 Additional File 1.

Here is shown how the cost function of the form J(θ) = [logP (A)A− logP (A)U]2 can
be expressed as a REINFORCE algorithm with a single point estimate of the return
G(at, st) = [logP (A)A − logP (A)U]2/ logP (A)A. A REINFORCE type algorithm for
an episode {s0, a0, r0, ..., sT , aT , rT} following the stochastic policy πθ is described by
the update rule:

θ = θ − α∇θ

T∑
t=0

log πθ(at | st)(G(at, st)− b)

Where α in this case is the step size, b is the reward baseline, and G(at, st) =∑T
t (rt) is the observed cumulative reward from time t until the end of the episode.

In a REINFORCE algorithm this single sampled trajectory serves as an unbiased
estimator of the expected cumulative reward. If we use a zero baseline b = 0, this is
equivalent to the cost function:

J(θ) =
T∑
t=0

log πθ(at | st)G(at, st)

If we define the reward for any state-action pair during the episode as equal to 0
except for the last step where it is G(A), this expression can be written as:

∀t ∈ [0, ..., T ], G(at, st) =
T∑
t

(rt) = G(A)

The cost function becomes:

J(θ) =
T∑
t=0

log πθ(at | st)G(at, st) = G(A)
T∑
t=0

log πθ(at | st)

We now note that the sum
∑T

t=0 log πθ(at | st) is equal to the Agent likelihood for
the sequence:

J(θ) = G(A)
T∑
t=0

log πθ(at | st) = G(A) logP (A)A

If we choose the reward for the final step of the sequence A to be G(A) =
[logP (A)A − logP (A)U]2/ logP (A)A, we recover our initial cost function:

J(θ) =
[logP (A)A − logP (A)U]2

logP (A)A
logP (A)A = [logP (A)A − logP (A)U]2
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